

MATHEMATICS HIGHER LEVEL PAPER 2

Thursday 8 May 2008 (morning)

2 hours

	C	andi	aate	sessi	on n	umb	er	
0	0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number on each answer sheet, and attach them to this examination paper and your cover sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all the questions in the spaces provided. Working may be continued below the lines, if necessary.

21113	wer un ine questions in the spaces provided. Working may be commuted below the times,	ij necessary.
1.	[Maximum mark: 5]	
	Consider the data set $\{k-2, k, k+1, k+4\}$, where $k \in \mathbb{R}$.	
	(a) Find the mean of this data set in terms of k .	[3 marks]
	Each number in the above data set is now decreased by 3.	
	(b) Find the mean of this new data set in terms of k .	[2 marks]

2. [Maximum mark: 6]

The depth, h(t) metres, of water at the entrance to a harbour at t hours after midnight on a particular day is given by

$$h(t) = 8 + 4\sin\left(\frac{\pi t}{6}\right), \ 0 \le t \le 24$$
.

(a)	Find the maximum depth and the minimum depth of the water.	[3 marks
(b)	Find the values of t for which $h(t) \ge 8$.	[3 marks

2	[Maximum mark:	. 57
J .	I Maximiim mark	. 7/

The curve $y = e^{-x} - x + 1$ intersects the x-axis at P.

(a)	Find the <i>x</i> -coordinate of P.	[2 marks]
(b)	Find the area of the region completely enclosed by the curve and the coordinate axes.	[3 marks]

•	 •	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•					

4. [Maximum mark: 6]

A continuous random variable X has probability density function

$$f(x) = \begin{cases} 12x^2(1-x), & \text{for } 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Find the probability th	at Y	lies between	the mean and	the mode
ring the probability th	$\alpha \iota \Lambda$	nes between	the mean and	i ille mode.

5.	[Maximum mark: /]
	Consider triangle ABC with $\hat{BAC} = 37.8^{\circ}$, $AB = 8.75$ and $BC = 6$.
	Find AC.

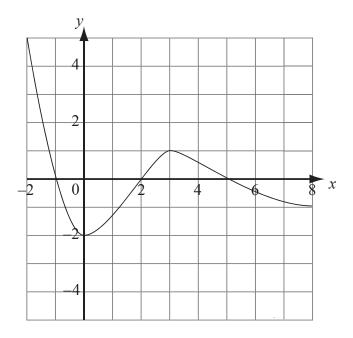
•																																									
		 								•		 		 	 	 	 	 	 		•		•			•				 									 		
		 										 		 	 	 	 	 	 											 									 	. .	
		 										 											 									 	. .								
•	•	 				•	•	•	•	•							 	 	 		•	•	•	•	•	•	•					•	•	•	•	•	•		 		

6. [Maximum mark: 7]

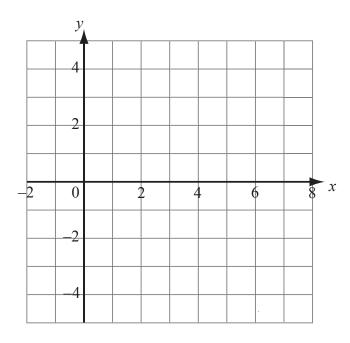
Consider the curve with equation $f(x) = e^{-2x^2}$ for x < 0.

Find the coordinates of the point of inflexion and justify that it is a point of inflexion.

•	•	• •	•	•	•	 •	•	•	• •	•	•	•	•	•	•	 •	•	•	•	•	 •	•	•	•	•	•	•	•	 •	•	•	•	 •	•	•	 •	•	•	 •	•	•	•	•	 •	•	•	•	• •	•
	•			•	•		•	•			•	•	•	•		 •	•	•	•		 •		•	•	•	•	•	-	 •	•	•		 •	•		 •	•	-	 •	•	•	•		 •	•	•	•		



7.	Over a one month period, Ava and Sven play a total of <i>n</i> games of tennis. The probability that Ava wins any game is 0.4. The result of each game played is independent of any other game played.					
Let X denote the number of games won by Ava over a one month period.						
	(a) Find an expression for $P(X = 2)$ in terms of n .	[3 marks]				
	(b) If the probability that Ava wins two games is 0.121 correct to three decimal places, find the value of n .	[3 marks]				



8. [Maximum mark: 5]

The graph of y = f(x) for $-2 \le x \le 8$ is shown.

On the set of axes provided, sketch the graph of $y = \frac{1}{f(x)}$, clearly showing any asymptotes and indicating the coordinates of any local maxima or minima.

9. [Maximum mark: 7]

Consider $w = \frac{z}{z^2 + 1}$ where z = x + iy, $y \ne 0$ and $z^2 + 1 \ne 0$.

Given that $\operatorname{Im} w = 0$, show that |z| = 1.

.....

.....

.....

.....

10.	[Maximum	mark:	6

Find the set of values of x for which $ 0.1x^2 - 2x + 3 < \log_{10} x$.						

SECTION B

Answer **all** the questions on the answer sheets provided. Please start each question on a new page.

11. [Maximum mark: 21]

The distance travelled by students to attend Gauss College is modelled by a normal distribution with mean 6 km and standard deviation 1.5 km.

- (a) (i) Find the probability that the distance travelled to Gauss College by a randomly selected student is between 4.8 km and 7.5 km.
 - (ii) 15 % of students travel less than d km to attend Gauss College. Find the value of d

[7 marks]

At Euler College, the distance travelled by students to attend their school is modelled by a normal distribution with mean μ km and standard deviation σ km.

(b) If 10 % of students travel more than 8 km and 5 % of students travel less than 2 km, find the value of μ and of σ .

[6 marks]

The number of telephone calls, *T*, received by Euler College each minute can be modelled by a Poisson distribution with a mean of 3.5.

- (c) (i) Find the probability that at least three telephone calls are received by Euler College in **each** of two successive one-minute intervals.
 - (ii) Find the probability that Euler College receives 15 telephone calls during a randomly selected five-minute interval.

[8 marks]

12. [Maximum mark: 20]

Let $\mathbf{M}^2 = \mathbf{M}$ where $\mathbf{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $bc \neq 0$.

- (a) (i) Show that a+d=1.
 - (ii) Find an expression for *bc* in terms of *a*. [5 marks]
- (b) Hence show that M is a singular matrix. [3 marks]
- (c) If all of the elements of M are positive, find the range of possible values for a. [3 marks]
- (d) Show that $(I M)^2 = I M$ where I is the identity matrix. [3 marks]
- (e) Prove by mathematical induction that $(I M)^n = I M$ for $n \in \mathbb{Z}^+$. [6 marks]

13. [Maximum mark: 19]

A particle moves in a straight line in a positive direction from a fixed point O.

The velocity $v \text{ m s}^{-1}$, at time t seconds, where $t \ge 0$, satisfies the differential equation

$$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{-v(1+v^2)}{50} \,.$$

The particle starts from O with an initial velocity of 10 m s⁻¹.

- (a) (i) Express as a definite integral, the time taken for the particle's velocity to decrease from 10 m s^{-1} to 5 m s^{-1} .
 - (ii) **Hence** calculate the time taken for the particle's velocity to decrease from 10 m s^{-1} to 5 m s^{-1} .

[5 marks]

- (b) (i) Show that, when v > 0, the motion of this particle can also be described by the differential equation $\frac{dv}{dx} = \frac{-(1+v^2)}{50}$ where x metres is the displacement from O.
 - (ii) Given that v = 10 when x = 0, solve the differential equation expressing x in terms of v.

(iii) Hence show that
$$v = \frac{10 - \tan\frac{x}{50}}{1 + 10\tan\frac{x}{50}}$$
. [14 marks]